eland.DataFrame.drop#

DataFrame.drop(labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise')#

返回删除了请求轴中的标签的新对象。

参数#

labels

要删除的索引或列标签。

axis

是否从索引 (0 / 'index') 或列 (1 / 'columns') 中删除标签。

index, columns

指定轴的替代方法 (labels, axis=1 等同于 columns=labels)。

level

对于 MultiIndex - 不支持

inplace

如果为 True,则就地执行操作并返回 None。

errors

如果为 'ignore',则抑制错误并删除现有标签。

返回值#

dropped

调用者的类型

另请参见#

pandas.DataFrame.drop

示例#

删除一列

>>> df = ed.DataFrame('https://127.0.0.1:9200', 'ecommerce', columns=['customer_first_name', 'email', 'user'])
>>> df.drop(columns=['user'])
     customer_first_name                       email
0                  Eddie  eddie@underwood-family.zzz
1                   Mary      mary@bailey-family.zzz
2                   Gwen      gwen@butler-family.zzz
3                  Diane   diane@chandler-family.zzz
4                  Eddie      eddie@weber-family.zzz
...                  ...                         ...
4670                Mary     mary@lambert-family.zzz
4671                 Jim      jim@gilbert-family.zzz
4672               Yahya     yahya@rivera-family.zzz
4673                Mary     mary@hampton-family.zzz
4674             Jackson  jackson@hopkins-family.zzz

[4675 rows x 2 columns]

通过索引值删除行 (axis=0)

>>> df.drop(['1', '2'])
     customer_first_name                       email     user
0                  Eddie  eddie@underwood-family.zzz    eddie
3                  Diane   diane@chandler-family.zzz    diane
4                  Eddie      eddie@weber-family.zzz    eddie
5                  Diane    diane@goodwin-family.zzz    diane
6                 Oliver      oliver@rios-family.zzz   oliver
...                  ...                         ...      ...
4670                Mary     mary@lambert-family.zzz     mary
4671                 Jim      jim@gilbert-family.zzz      jim
4672               Yahya     yahya@rivera-family.zzz    yahya
4673                Mary     mary@hampton-family.zzz     mary
4674             Jackson  jackson@hopkins-family.zzz  jackson

[4673 rows x 3 columns]