eland.groupby.DataFrameGroupBy.max#
- DataFrameGroupBy.max(numeric_only: bool = True) pd.DataFrame #
计算每个组的最大值。
参数#
- numeric_only: {True, False, None} 默认值为 True
要返回的哪种数据类型 - True: 返回所有值为 float64,NaN/NaT 值将被删除 - None: 返回所有值为相同的数据类型(如果可能),NaN/NaT 值将被删除 - False: 返回所有值为相同的数据类型(如果可能),NaN/NaT 值将被保留
返回值#
- pandas.DataFrame
每个组的每个数值列的最大值
另请参见#
示例#
>>> df = ed.DataFrame( ... "https://127.0.0.1:9200", "flights", ... columns=["AvgTicketPrice", "Cancelled", "dayOfWeek", "timestamp", "DestCountry"] ... ) >>> df.groupby("DestCountry").max(numeric_only=False) AvgTicketPrice Cancelled dayOfWeek timestamp DestCountry AE 1126.148682 True 6 2018-02-11 04:11:14 AR 1199.642822 True 6 2018-02-11 17:09:05 AT 1181.835815 True 6 2018-02-11 23:12:33 AU 1197.632690 True 6 2018-02-11 21:39:01 CA 1198.852539 True 6 2018-02-11 23:04:08 ... ... ... ... ... RU 1196.742310 True 6 2018-02-11 20:03:31 SE 1198.621582 True 6 2018-02-11 22:06:14 TR 855.935547 True 6 2018-02-04 01:59:23 US 1199.729004 True 6 2018-02-11 23:27:00 ZA 1196.186157 True 6 2018-02-11 23:29:45 [32 rows x 4 columns]