eland.groupby.DataFrameGroupBy.var#
- DataFrameGroupBy.var(numeric_only: bool = True) pd.DataFrame #
计算每个分组的方差值。
参数#
- numeric_only: {True, False, None} 默认值为 True
要返回的哪种数据类型 - True: 将所有值返回为 float64,NaN/NaT 值将被删除 - None: 尽可能将所有值返回为相同的数据类型,NaN/NaT 将被删除 - False: 尽可能将所有值返回为相同的数据类型,NaN/NaT 将被保留
返回值#
- pandas.DataFrame
每个分组中每个数字列的方差值
另请参见#
示例#
>>> df = ed.DataFrame( ... "https://127.0.0.1:9200", "flights", ... columns=["AvgTicketPrice", "Cancelled", "dayOfWeek", "timestamp", "DestCountry"] ... ) >>> df.groupby("DestCountry").var() AvgTicketPrice Cancelled dayOfWeek DestCountry AE 75789.979090 0.130443 3.950549 AR 59683.055316 0.125979 3.783429 AT 65726.669676 0.144610 4.090013 AU 65088.483446 0.113094 3.833562 CA 68149.950516 0.116496 3.688139 ... ... ... ... RU 67305.277617 0.114107 3.852666 SE 53740.570338 0.127062 3.942132 TR 61245.521047 0.094868 4.100420 US 74349.939410 0.109638 3.758700 ZA 62920.072901 0.126608 3.775609 [32 rows x 3 columns]