eland.groupby.DataFrameGroupBy.mad#
- DataFrameGroupBy.mad(numeric_only: bool = True) pd.DataFrame #
计算每个组的平均绝对偏差值。
参数#
- numeric_only: {True, False, None} 默认值为 True
要返回的哪种数据类型 - True: 将所有值返回为 float64,NaN/NaT 值将被移除 - None: 尽可能将所有值返回为相同的数据类型,NaN/NaT 将被移除 - False: 尽可能将所有值返回为相同的数据类型,NaN/NaT 将被保留
返回#
- pandas.DataFrame
每个组的每个数值列的平均绝对偏差值
另请参见#
示例#
>>> df = ed.DataFrame( ... "https://127.0.0.1:9200", "flights", ... columns=["AvgTicketPrice", "Cancelled", "dayOfWeek", "timestamp", "DestCountry"] ... ) >>> df.groupby("DestCountry").mad() AvgTicketPrice Cancelled dayOfWeek DestCountry AE 233.697174 NaN 1.5 AR 189.250061 NaN 2.0 AT 195.823669 NaN 2.0 AU 202.539764 NaN 2.0 CA 203.344696 NaN 2.0 ... ... ... ... RU 206.431702 NaN 2.0 SE 178.658447 NaN 2.0 TR 221.863434 NaN 1.0 US 228.461365 NaN 2.0 ZA 192.162842 NaN 2.0 [32 rows x 3 columns]