eland.groupby.DataFrameGroupBy.sum#

DataFrameGroupBy.sum(numeric_only: bool = True) pd.DataFrame#

计算每个组的总和值。

参数#

numeric_only: {True, False, None} 默认值为 True

要返回的数据类型 - True: 将所有值返回为 float64,NaN/NaT 值将被移除 - None: 尽可能将所有值返回为相同的数据类型,NaN/NaT 将被移除 - False: 尽可能将所有值返回为相同的数据类型,NaN/NaT 将被保留

返回值#

pandas.DataFrame

每个组的每个数值列的总和值

另请参阅#

pandas.core.groupby.GroupBy.sum

示例#

>>> df = ed.DataFrame(
...   "https://127.0.0.1:9200", "flights",
...   columns=["AvgTicketPrice", "Cancelled", "dayOfWeek", "DestCountry"]
... )
>>> df.groupby("DestCountry").sum() 
             AvgTicketPrice  Cancelled  dayOfWeek
DestCountry
AE             2.783612e+04        7.0      124.0
AR             2.058223e+05       45.0      837.0
AT             2.437872e+05       66.0     1083.0
AU             2.785365e+05       54.0     1183.0
CA             6.124173e+05      127.0     2786.0
...                     ...        ...        ...
RU             4.899533e+05       97.0     2093.0
SE             1.684563e+05       38.0      684.0
TR             4.852532e+03        1.0       19.0
US             1.183804e+06      249.0     5472.0
ZA             1.819840e+05       42.0      783.0

[32 rows x 3 columns]