eland.ml.MLModel.predict#

MLModel.predict(X: Union[ArrayLike, List[float], List[List[float]]]) ArrayLike#

使用存储在 Elasticsearch 中的训练模型进行预测。

此方法的参数尚未完全与标准 sklearn.predict 兼容。

参数#

X: 输入特征向量。

必须是 numpy ndarray 或者 float 类型的列表或列表的列表。TODO: 支持 DataFrame 和其他格式

返回值#

y: 回归器为 dtype float 的 np.ndarray 或者分类器为 int 的 np.ndarray

示例#

>>> from sklearn import datasets
>>> from xgboost import XGBRegressor
>>> from eland.ml import MLModel
>>> # Train model
>>> training_data = datasets.make_classification(n_features=6, random_state=0)
>>> test_data = [[-1, -2, -3, -4, -5, -6], [10, 20, 30, 40, 50, 60]]
>>> regressor = XGBRegressor(objective='reg:squarederror')
>>> regressor = regressor.fit(training_data[0], training_data[1])
>>> # Get some test results
>>> regressor.predict(np.array(test_data))  
array([0.06062475, 0.9990102 ], dtype=float32)
>>> # Serialise the model to Elasticsearch
>>> feature_names = ["f0", "f1", "f2", "f3", "f4", "f5"]
>>> model_id = "test_xgb_regressor"
>>> es_model = MLModel.import_model('https://127.0.0.1:9200', model_id, regressor, feature_names, es_if_exists='replace')
>>> # Get some test results from Elasticsearch model
>>> es_model.predict(test_data)  
array([0.0606248 , 0.99901026], dtype=float32)
>>> # Delete model from Elasticsearch
>>> es_model.delete_model()