eland.groupby.DataFrameGroupBy.mean#
- DataFrameGroupBy.mean(numeric_only: bool = True) pd.DataFrame #
计算每个组的平均值。
参数#
- numeric_only: {True, False, None} 默认为 True
要返回的哪种数据类型 - True: 将所有值返回为 float64,删除 NaN/NaT 值 - None: 尽可能将所有值返回为相同的数据类型,删除 NaN/NaT - False: 尽可能将所有值返回为相同的数据类型,保留 NaN/NaT
返回值#
- pandas.DataFrame
每个组的每个数字列的平均值
另请参阅#
示例#
>>> df = ed.DataFrame( ... "http://localhost:9200", "flights", ... columns=["AvgTicketPrice", "Cancelled", "dayOfWeek", "timestamp", "DestCountry"] ... ) >>> df.groupby("DestCountry").mean(numeric_only=False) AvgTicketPrice Cancelled dayOfWeek timestamp DestCountry AE 605.132970 0.152174 2.695652 2018-01-21 16:58:07.891304443 AR 674.827252 0.147541 2.744262 2018-01-21 22:18:06.593442627 AT 646.650530 0.175066 2.872679 2018-01-21 15:54:42.469496094 AU 669.558832 0.129808 2.843750 2018-01-22 02:28:39.199519287 CA 648.747109 0.134534 2.951271 2018-01-22 14:40:47.165254150 ... ... ... ... ... RU 662.994963 0.131258 2.832206 2018-01-21 07:11:16.534506104 SE 660.612988 0.149020 2.682353 2018-01-22 07:48:23.447058838 TR 485.253247 0.100000 1.900000 2018-01-16 16:02:33.000000000 US 595.774391 0.125315 2.753900 2018-01-21 16:55:04.456970215 ZA 643.053057 0.148410 2.766784 2018-01-22 15:17:56.141342773 [32 rows x 4 columns]