eland.groupby.DataFrameGroupBy.median#
- DataFrameGroupBy.median(numeric_only: bool = True) pd.DataFrame #
计算每个组的中位数。
参数#
- numeric_only: {True, False, None} 默认为 True
返回哪种数据类型 - True: 将所有值返回为 float64,删除 NaN/NaT 值 - None: 尽可能将所有值返回为相同的数据类型,删除 NaN/NaT 值 - False: 尽可能将所有值返回为相同的数据类型,保留 NaN/NaT 值
返回#
- pandas.DataFrame
每个组中每个数字列的中位数绝对偏差值
另请参阅#
示例#
>>> df = ed.DataFrame( ... "http://localhost:9200", "flights", ... columns=["AvgTicketPrice", "Cancelled", "dayOfWeek", "timestamp", "DestCountry"] ... ) >>> df.groupby("DestCountry").median(numeric_only=False) AvgTicketPrice Cancelled dayOfWeek timestamp DestCountry AE 585.720490 False 2 2018-01-19 23:56:44.000 AR 678.447433 False 3 2018-01-22 10:18:50.000 AT 659.715592 False 3 2018-01-20 20:40:10.000 AU 689.241348 False 3 2018-01-22 18:46:11.000 CA 663.516057 False 3 2018-01-22 21:35:09.500 ... ... ... ... ... RU 670.714956 False 3 2018-01-20 16:48:16.000 SE 680.111084 False 3 2018-01-22 20:53:44.000 TR 441.681122 False 1 2018-01-13 23:17:27.000 US 600.591525 False 3 2018-01-22 04:09:50.000 ZA 633.935425 False 3 2018-01-23 17:42:57.000 [32 rows x 4 columns]